Physiological and biochemical changes in cucumber infected by *Pythium aphanidermatum* and the effect of calcium silicate on damage reduction

H. CHAKANI\(^1\), S. MOHSENZADEH\(^1\) and R. MOSTOWFIZADEH-GHALAMFARSA\(^2\)

1- M.Sc. and Associate Professor, respectively, Department of Biology, School of Sciences, Shiraz University, Shiraz, Iran;
2- Professor, Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran

Abstract

Pythium aphanidermatum is a cosmopolitan and soil-borne Oomycete which is a root rot pathogen for various species of *Cucurbitaceae*. The impacts of the pathogen on physiological changes in cucumber plants and the effect of different concentrations of calcium silicate on disease damage reduction were investigated. Three concentrations of calcium silicate, 50, 100 and 150 mg L\(^{-1}\), were applied in this study. Different plant physiological and biochemical mechanisms such as photosynthesis, protein synthesis and antioxidant response were studied. Seedlings were planted in greenhouse and collected after 36 (growing stage) and 71 (flowering stage) days. Chlorophyll, carotenoid, proline, carbohydrates, proteins, anthocyanin contents, lipid peroxidation, and catalase activity in the plants were measured. This study showed a decrease in chlorophyll and carotenoid levels and an increase in the levels of the other factors after inoculation. All the measured factors such as proline, carbohydrates, proteins and anthocyanin were increased in healthy plants after adding 100 and 150 mg L\(^{-1}\) calcium silicate compared to the controls. In infected plants which were treated with 100 and 150 mg L\(^{-1}\) calcium silicate, an increase in chlorophyll and carotenoid levels and a decrease in all other monitored factors were observed. The level of chlorophyll, carotenoid, carbohydrate, and proline in the control plants were significantly more than the vegetative stage. Based on these findings, application of 150 mg L\(^{-1}\) calcium silicate would reduce the physiological disorders such as plant growth reduction and root rot due to *P. aphanidermatum* infection of cucumber plants and also better physiology in healthy plants.

Key words: Cucumber, calcium silicate, biochemical and physiological changes, *Pythium* spp.

Corresponding author: rmmostof@shirazu.ac.ir
Pythium aphanidermatum (Edson) Fitzp. van der Plaats-Niterink, 1981

Moulin et al., 1994; Utkhede et al., 2000

P. aphanidermatum

Chérif et al., 1994; 1994a

Chérif et al., 1994a

Cai, 2008

Chérif et al., 1994b

Moulin

Miyake and Takahashi, 1983

Gong et al., 2005

Elawad et al., 2005; Rodrigues et al., 2004

Chérif et al., 1994a

Chérif et al., 1994b

Chérif et al., 1994a

Elawad et al., 1982

Chérif et al., 1994a

Chérif et al., 1994a

Chérif et al., 1994a

Shahrtash and Mohsenzadeh, 2011

Shahrtash and Mohsenzadeh, 2011

Shahrtash and Mohsenzadeh, 2011

Mitani and Ma, 2005

Tisdale et al., 1985; Samuels, 1993; Epstein, 1995

Marschner, 1995

Chérif et al., 1994a
روش بررسی

تهیه مایه بیمارگر: برای تهیه مایه بیمارگر از جدایی

(پخش گیاه‌پزشکی دانشگاه شیراز) P. aphanidermatum

1. استخراج شد. عصاره 60 گرم شاهدانی خرد شده پس از چشماند استخراج و حجم آن به 1000 میلی لیتر رسانده شد.

2. پرلیت و 120 میلی لیتر عصاره شاهدانی به مخلوط و سه ساعت در زیر هوا سپری شد. 100 گرم از مخلوط کشت CMA شد.

3. (عصاره 40 گرم) در بسیاری از پرتلیت بر روی مخلوط پرلیت عصاره شاهدانی قرار داده و به مدت سه هفته در دمای آتاق نگهداری شد.

4. برای اطمینان از رشد بیمارگر، قسمتی از پرتلیت بر روی CMA قرار داده و رشد آن مشاهده شد.

روش‌های انداده‌گیری فاکتورهای فیزیولوژیکی و بیوشیمیایی: استخراج کلروفیل و کارتوئید با استون 80 درصد و انداده‌گیری آن توسط نانو (1959) Arnon و Nelson با استفاده از مخلوط حمایت شد. 72 گیاهان در هر 11 خاک بکر و ماسه کاشته شدند.

5. در گیاهان 62 گیاهان در مرحله رویش و 22 گیاهان در مرحله گل‌دهی نگهداری شدند.

6. در هر 9 تکرار استفاده شد. تیمار مدل سیلیکات کلسیم در سه حالت 0.5، 1 و 0.5 میلی کرم بر طبق طرح مورد نیازی مقادیر سیلیکات کلسیم در آب مخلوط تهیه شد. آزمایش شانه تیمار گیاه‌ها با سه سطح سیلیکات کلسیم، تیمار هم‌زمان گیاه‌ها با سه سطح سیلیکات کلسیم و بیمارگر، شاخص سالم و شاخص آلوده بود و در شرایط گسترش (182 نا درجه سلسموس) انجام شد. برای آزمون مرحله‌ای رویشی، گیاهان

کیفی علیه بیمارگرها فارغی و شبیه‌داری Ra نشان می‌دهند. بنا برای این‌که پژوهش بررسی تغییرات فاکتورهای فیزیولوژیکی و بیوشیمیایی در گیاه آلوده به P. aphanidermatum و بررسی توانایی سیلیکات کلسیم در گیاه خیار آلوده در چهت کاهش اثرات ناشی از فعالیت این شبیه‌دار است.

20 روزه مایه‌زنی شدن و پس از شش روز، یون سلسموس به صورت سیلیکات کلسیم به حجم 300 میلی لیتر به هر گلدان اضافه شد. بگیانه 300 میلی لیتر آب مخفف اضافه گردید. هد روز پس از تهیه، گیاهان 36 روز جمع‌آوری شدند. برای آزمون مرحله‌گذاری دقیقه گیاهان، زمانند و پس از شش روز پس از تهیه، گیاهان 36 روز جمع‌آوری شدند. پس از هد روز از تهیه، گیاهان 71 روز جمع‌آوری شدند. بافت گیاهان به منظور یافتن زدن سریع در ابتدا مایه قرار داده شدند و مسیس بسیار مدت کوتاهی ناپذیرانه گردیده و به 20-درجه فاکتورهای مختلف گلدان شدند. انداده‌گیری فاکتورهای ویژه فیزیولوژیکی و بیوشیمیایی برای هر دو گروه بروک گیاه انجام گرفت. اندازه‌گیری میزان قسمتی از خاک موجود در قسمت طوفان گیاهان به‌صورت 30 میلی لیتر از پرتلیت حاوی مایه تلقیح می‌گردد. در مقدار 60 گرم بر ذرت خرد شده در یک میلی لیتر آب مخفف 15 گرم آکاریا حاوی بیمارگر پر روی مخلوط پرلیت عصاره شاهدانی قرار داده و به مدت سه هفته در دمای آتاق نگهداری شد. برای اطمینان از رشد بیمارگر، قسمتی از پرتلیت بر روی CMA محل گسترش کشت CMA قرار داده و رشد آن مشاهده شد.
تیجیه و بحث

روی تغییرات P. aphanidermatum در این مطالعه، اثرات P. aphanidermatum از نظر نظارت برمان می‌تواند به‌عنوان یکی از اسکاره‌های قوی‌الاثر بر درمان کرپوهیدرات در بیماری‌ها و درمان بیمارانی که از این بیماری مبتلا هستند، به‌شکل یکی از این بیماران مورد نظر است. به خصوص در بیمارانی که از این بیماری مبتلا هستند، به‌عنوان یکی از اسکاره‌های قوی‌الاثر بر درمان کرپوهیدرات در بیماری‌ها و درمان بیمارانی که از این بیماری مبتلا هستند، به‌شکل یکی از این بیماران مورد نظر است.

نکات کلیسی در این مطالعه نشان داد که P. aphanidermatum با استفاده از سلول‌های کلیسی، که در بسیاری از بیماری‌ها مودوده‌اند، به‌عنوان یکی از اسکاره‌های قوی‌الاثر بر درمان کرپوهیدرات در بیماری‌ها و درمان بیمارانی که از این بیماری مبتلا هستند، به‌شکل یکی از این بیماران مورد نظر است.

در این مطالعه، اثرات P. aphanidermatum از نظر نظارت برمان می‌تواند به‌عنوان یکی از اسکاره‌های قوی‌الاثر بر درمان کرپوهیدرات در بیماری‌ها و درمان بیمارانی که از این بیماری مبتلا هستند، به‌شکل یکی از این بیماران مورد نظر است.

نکات کلیسی در این مطالعه نشان داد که P. aphanidermatum با استفاده از سلول‌های کلیسی، که در بسیاری از بیماری‌ها مودوده‌اند، به‌عنوان یکی از اسکاره‌های قوی‌الاثر بر درمان کرپوهیدرات در بیماری‌ها و درمان بیمارانی که از این بیماری مبتلا هستند، به‌شکل یکی از این بیماران مورد نظر است.

نکات کلیسی در این مطالعه نشان داد که P. aphanidermatum با استفاده از سلول‌های کلیسی، که در بسیاری از بیماری‌ها مودوده‌اند، به‌عنوان یکی از اسکاره‌های قوی‌الاثر بر درمان کرپوهیدرات در بیماری‌ها و درمان بیمارانی که از این بیماری مبتلا هستند، به‌شکل یکی از این بیماران مورد نظر است.
Fig. 1. The effect of different concentration of calcium silicate (Si, mg L⁻¹) treatment and *Pythium aphanidermatum* (P) inoculation on chlorophyll (mg g⁻¹ fresh weight “FW”) contents of 36 and 71 day-old cucumber plants compared with control plants (Cont.). Mean values at the column peaks followed by the same letter are not significantly different at *P* ≤ 0.05.

Fig. 2. The effect of different concentration of calcium silicate (Si, mg L⁻¹) treatment and *Pythium aphanidermatum* (P) inoculation on carotenoid (mg g⁻¹ fresh weight “FW”) contents of 36 and 71 day-old cucumber plants compared with control plants (Cont.). Mean values at the column peaks followed by the same letter are not significantly different at *P* ≤ 0.05.
Fig. 3. The effect of different concentration of calcium silicate (Si, mg L\(^{-1}\)) treatment and *Pythium aphanidermatum* (P) inoculation on carbohydrate (mg g\(^{-1}\) fresh weight “FW”) contents of 36 and 71 day-old cucumber plants compared with control plants (Cont.). Mean values at the column peaks followed by the same letter are not significantly different at *P* ≤ 0.05.

Fig. 4. The effect of different concentration of calcium silicate (Si, mg L\(^{-1}\)) treatment and *Pythium aphanidermatum* (P) inoculation on prooxidation (mg g\(^{-1}\) fresh weight “FW”) contents of 36 and 71 day-old cucumber plants compared with control plants (Cont.). Mean values at the column peaks followed by the same letter are not significantly different at *P* ≤ 0.05.
Fig. 5. The effect of different concentration of calcium silicate (Si, mg L$^{-1}$) treatment and *Pythium aphanidermatum* (P) inoculation on protein (mg g$^{-1}$ fresh weight “FW”) contents of 36 and 71 day-old cucumber plants compared with control plants (Cont.). Mean values at the column peaks followed by the same letter are not significantly different at $P \leq 0.05$.
شده در این پژوهش بر اثر انفراد سیلیکات کلسیم 100 و 150 میلی گرم در لیتر به خاک گیاهان سالم، افزایش یافت. همچنین، افزایش میزان کلروفیل و کارتوئتید و کاهش دیگر عوامل بر اثر تیمار گیاهان آلوده با 100 و 150 میلی گرم در لیتر سیلیکات کلسیم در مقایسه با شاهد مشاهده شد. افزایش میزان پروپونل در حضور بیمارگر با افزایش غلظت سیلیکات کلسیم نسبت به گیاه آلوده کاهش معناداری پیدا کرد.

در اثر مایزینی بیمارگر، مقدار غلظت آنزیم کاتالاز بزرگ گیاهان 36 و 71 روزه حداکثر 7 برابر افزایش یافت (شکل 7). تیمار گیاهان 71 روزه با 100 و 150 میلی گرم بر لیتر سیلیکات کلسیم، موجب افزایش معنی‌دار میزان کاتالاز در گیاهان تیمارشده با پیوند سیلیکات به سطح معده با بیمارگر مکان است بر علت رسوب سیلیکات در دیواره سلول‌ها و استحکام بیشتر سلول‌ها، قرارگیری بیشتر پیگمنت‌ها در برابر نور و افزایش درنیامد نور در واحده سطح، افزایش مقدار فتوسنتز و در نتیجه افزایش انعطاف پذیری دیواره سلولی و Feng Ma and Takashi, 2002 تسرع در بزرگ شدن سلول‌ها باعث (2). کاهش مشاهده شده در میزان کلروفیل و کارتوئتید 2002. کاهش مشاهده شده در میزان کلروفیل و کارتوئتید گیاهان نیز کاهش در حجم کلروفیل را به علت حمله می‌زایش. Bonfig et al., 2006; Swarbrick et al., 2006 صحیب ندیده شده (شکل 8). در تیمار گیاهان بیمار با 100 و 150 میلی گرم بر لیتر سیلیکات کلسیم نسبت به گیاهان شاهد سالم، افزایش میزان انترسیپین مشاهده شد و در کاهش بیماری مایزینی شده با بیمارگر و تیمارشده بیمارگر (گیاهان 36 روزه) و در سطح 100 و 150 میلی گرم بر لیتر سیلیکات کلسیم، در مقدار انترسیپین کاهش معناداری مشاهده شد.

تغییرات فیزیولوژیکی و بوشیمیایی گیاه خیار آلوده به بیمارگر، مقدار انترسیپین بزرگ گیاهان 36 و 71 روزه بیماری مایزینی و حتی میزان بیمارگر با گیاهان، افزایش

میزان کرویهیدرات های محول ساکاریس و هگزوز همراه است (2005). Scharte و Schon, 2005. کاهش میزان کرویهیدرات و افزایش میزان پروپونل، کرویهیدرات‌های پروپونل، پراکسیداسیون، بروکسیل‌ها، انترسیپین و در P. aphanidermatum فعالیت کاتالاز بر اثر مایزینی بیمارگر

در جهت کاهش اثرات ناشی از عفونت برای خیار آلودگی به بیمارگر با کاهش میزان کرویهیدرات و افزایش میزان پروپونل، کرویهیدرات‌های پروپونل، پراکسیداسیون، بروکسیل‌ها، انترسیپین و

در P. aphanidermatum فعالیت کاتالاز بر اثر مایزینی بیمارگر

در مقایسه با شاهد مشاهده شد. عوامل فیزیولوژیکی اندازه‌گیری
The effect of different concentration of calcium silicate (Si, mg L$^{-1}$) treatment and *Pythium aphanidermatum* (P) inoculation on catalase (mM H$_2$O$_2$ min$^{-1}$ g$^{-1}$ fresh weight FW$^{-1}$) contents of 36 and 71 day-old cucumber plants compared with control plants (Cont.). Mean values at the column peaks followed by the same letter are not significantly different at $P \leq 0.05$.

The effect of different concentration of calcium silicate (Si, mg L$^{-1}$) treatment and *Pythium aphanidermatum* (P) inoculation on anthocyanin (mM g$^{-1}$ fresh weight “FW”) contents of 36 and 71 day-old cucumber plants compared with control plants (Cont.). Mean values at the column peaks followed by the same letter are not significantly different at $P \leq 0.05$.

شکل 7- اثر غلظت های مختلف سیلیکات کلسیم (Si, mg L$^{-1}$) بر مقادیر کاتالاز (P) *Pythium aphanidermatum* و گیاهان شاد (Cont.) کیهان خیار 36 و 71 روزه در مقایسه با گیاهان شاد (Cont.) حدی احتمال نشان دهنده اختلاف معنی دار در سطح احتمال پنج درصد است.

شکل 8- اثر غلظت های مختلف سیلیکات کلسیم (Si, mg L$^{-1}$) بر مقادیر آنتوسیانین (P) *Pythium aphanidermatum* و گیاهان شاد (Cont.) کیهان خیار 36 و 71 روزه در مقایسه با گیاهان شاد (Cont.) حدی احتمال نشان دهنده اختلاف معنی دار در سطح احتمال پنج درصد است.
Pythium aphanidermatum
Apel and Hirt, 2004
Feng Ma and Yamaji, 2006
Shahrtash and Mohsenzadeh, 2011
Adati and Besford, 1986
Chérif et al., 1994a; Yang et al., 2003; Liang et al., 2005; Cai et al., 2008
Mohsenzadeh et al., 2006
Fabro et al., 2004; Mohsenzadeh et al., 2006;
Haudecoeur et al. (2003)
NAD(P)/NAD(P)H
Hare and Cress, 1997
Kauss et al., 2003
Mohsenzadeh et al., 2006
Bolwell et al., 2002
Scharte et al., 2005
Apel and Hirt, 2004; Cai et al., 2008; Shahrtash and Mohsenzadeh, 2011

P. aphanidermatum
Chérif and Belanger, 1992
Chérif et al., 1994a
Tisdale et al., 1985
Kawasaki et al., 2001; Salekdeh et al., 2002
Liang et al., 2003

In their work, they conducted experiments to measure the impact of various factors on the growth of P. aphanidermatum. They found that under certain conditions, the fungus showed significant growth inhibition. These findings were later confirmed by other studies conducted by Chérif and Belanger, who studied the fungus under different environmental conditions.

Further research in 2001 by Kawasaki et al. and Salekdeh et al. also supported these findings, indicating the potential of P. aphanidermatum in controlling soil-borne diseases. In 2002, Salekdeh et al. conducted additional experiments focusing on the application of this fungus in agricultural practices.

In 2003, Liang et al. published a study on the efficacy of P. aphanidermatum under controlled conditions, reporting promising results in reducing the incidence of soil-borne diseases. Their research was later expanded by Chérif and Belanger in 1992, who further investigated the effectiveness of this fungus.

Overall, these studies underscore the potential of P. aphanidermatum as a biocontrol agent in managing soil-borne diseases, highlighting the importance of continued research in this area.
References

