کارآیی برخی جدایه‌های بومی تریکودرما در القای مقاومت گوجه‌فرنگی به Fusarium oxysporum f. sp. lycopersici، عامل بیماری پژمردگی فوزاریومی

نوع مقاله: مدیریت آفات و بیماری‌های گیاهی

نویسندگان

1 دانشجوی دکتری، گروه بیماری شناسی گیاهی، دانشکده کشاورزی و منابع طبیعی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار گروه بیماری شناسی گیاهی، دانشکده کشاورزی و منابع طبیعی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 استادیار گروه زیست شناسی، دانشکده علوم پایه، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران

4 استاد گروه بیماری شناسی گیاهی، دانشکده کشاورزی و منابع طبیعی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

بیماری پژمردگی فوزاریومی ناشی ازFusarium oxysporum f. sp. lycopersici (Fol)، از بیماری‌های خسارت‌زای گوجه‌فرنگی است. کنترل بیماری از طریق القای مقاومت توسط عوامل بیوکنترلی، یک راهکار مدیریتی در جهت کاهش مصرف سموم شیمیایی می‌باشد. لذا، در این مطالعه کارآیی ده جدایه بومی تریکودرما در القای مقاومت علیه قارچ عامل بیماری مورد بررسی قرار گرفت. ارزیابی فنوتیپی القای مقاومت در گلخانه توسط جدایه‌های تریکودرما با دو روش زیست‌سنجی تفکیک ریشه و تزریق به ساقه نشان داد که تیمارهای Th-14+Fol Trichoderma harzianum و Ta-30+Fol Trichoderma atroviride در هر دو آزمون به طور معنی‌داری (P≤0.05) کم‌ترین شدت و وقوع بیماری را داشتند. نتایج حاصل از بررسی قابلیت کلونیزاسیون ریزوسفر توسط جدایه‌های تریکودرما با روش رقیق‌سازی سریالی نیز بیشترین تراکم جمعیت را در این دو تیمار نشان داد. بین تراکم جمعیت جدایه‌های تریکودرما و شدت بیماری همبستگی منفی مشاهده شد. تیمار گیاهچه‌ها با دو جدایه Th-14 و Ta-30 به طور مجزا و در تلفیق با یکدیگر، فعالیت آنزیم‌های پلی فنل اکسیداز و پراکسیداز را به طور معنی‌داری (P≤0.05) در مقایسه با تیمار شاهد (Fol) افزایش داد. نتایج این بررسی می‌تواند در مدیریت تلفیقی بیماری پژمردگی فوزاریومی گوجه‌فرنگی مورد استفاده قرار گیرد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The efficacy of some native Trichoderma isolates in induction of resistance in tomato against Fusarium oxysporum f. sp. lycopersici, the causal agent of Fusarium wilt disease

نویسندگان [English]

  • SH ALEAGHAEE 1
  • S. REZAEE 2
  • M. EBADI 3
  • H. R. ZAMANIZADEH 4
1 Department of Plant Pathology, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Plant Pathology College of Agriculture and Natural Resources Science and Research Branch Islamic Azad University Tehran, Iran
3 Department of Biology, College of Basic Sciences, Damghan Branch, Islamic Azad University, Damghan, Iran
4 Department of Plant Pathology, College of Agriculture and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is one of the most destructive tomato diseases. The disease control through induction of resistance by biocontrol agents is a management strategy to reduce application of chemical fungicides. So, in this study the efficacy of 10 native Trichoderma isolates in induction of resistance against the pathogen was evaluated. In greenhouse, phenotypic evaluation of induction of resistance by Trichoderma isolates with stem-injection and split-root bioassay methods showed the least disease severity and incidence significantly (p≤0.05) in Trichoderma harzianum Th-14+Fol and Trichoderma atroviride Ta-30+Fol treatments. The results of study of rhizosphere colonization ability of Trichoderma isolates by serial dilution method, revealed maximum population density in these two isolates. The disease severity showed negative correlation with Trichoderma population density. The activity of polyphenol oxidase and peroxidase increased significantly (p≤0.05) in the plants treated with Th-14 and Ta-30 isolates compared to control (Fol). The results of this study can be applied in integrated management of tomato Fusarium wilt.

کلیدواژه‌ها [English]

  • biological control
  • induced systemic resistance
  • Polyphenol oxidase
  • split-root
  • stem-injection
  • Trichoderma isolates
AGRIOS, G. 2005. Plant Pathology (5thed). Academic Press, New York.

AKRAM, W., A. MAHBOOB and A. A. JAVED, 2013. Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt. European Journal of Microbiology and Immunology, 3: 275-280.

ALFANO, G., M. L. LEWIS IVEY, C. CAKIR, J. I. B. BOS, S. A. MILLER, L. V. MADDEN, S. KAMOUN and H. A. J. HOITINK, 2007. Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology, 97: 429-437.

ALIZADEH, H., K. BEHBOUDI, M. AHMADZADEH, M. JAVAN-NIKKHAH, CH. ZANIODIS, C. M. PIETERS and P. A. H. M. BAKKER, 2013. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum  Tr6 and Pseudomonas sp. Ps14. Biological Control, 65: 14-23.

ALTINOK, H. H. 2009. Activation of systemic resistance by acibenzolar-s-methyl and a non-pathogenic Fusarium oxysporum melonis (FOM) strain against Fusarium wilt disease in eggplant seedlings. Journal of Turkish Phytopathology, 38: 21-32.

AMER, M. A., I. A. EL-SAMRA, I. I. ABOU-EL-SEOUD, S. M. EL-ABD and N. K. SHAWERTAMIM, 2014. Induced systemic resistance in tomato plant against Fusarium wilt disease using biotic inducers.  Middle East Journal of Agriculture Research, 3: 1090-1103.

AMINI, J. 2009. Physiological race of Fusarium oxysporum f. sp. lycopersici in Kurdistan province of Iran and reaction of some tomato cultivars to race 1 of pathogen. Journal of Plant Pathology, 8: 68-73.

AMINI, J. and F. S. DZHALILOVE, 2010. Induction of systemic resistance in tomato against Fusarium oxysporum f. sp. Lycopersici causal agent of Fusarium wilt by non-pathogenic F. oxysporum in greenhouse condition. Applied Entomology and Phytopathology, 78: 15-32.

ANONYMOUS, 2015. Statistics of Agriculture. Ministry of Agriculture Jihad Press, Tehran.

BAWA, I. 2016. Management strategies of Fusarium wilt disease of tomato incited by Fusarium oxysporum f. sp. lycopersici (sacc.): a review. International Journal of Advanced Academic Research, 2: 32-42.

BI, J. L. and G. W. FELTON, 1995. Foliar oxidative stress and insect herbivory: primary compounds, secondary metabolites and reactive oxygen species as components of induced resistance. Journal of Chemistry and Ecology. 21: 1511-1530.

BISSETT, J. 1991a. A revision of the genus Trichoderma II. Infrageneric classification. Canadian Journal of Botany, 69: 2357-2372.

BISSETT, J. 1991b. A revision of the genus Trichoderma III. Section Pachybasium .Canadian Journal of Botany, 69: 2373- 2417.

BISSET, J. 1991c. A revision of the genus Trichoderma IV. Additional notes on section Longibrachiatum. Canadian Journal of Botany, 69: 2418-2420.

BOYHAN, G. E., D. B. LAGSTON, P. M. LEWIS and M. O. LINTON, 2001. Use of insulin syringe for Fusarium wilt inoculation of watermelon germplasm. Cucurbit Genetics Cooperative Report, 24: 49-51.

CHAKRABORTY, M. and N. C. CHATTERJEE, 2007. Interaction of Trichoderma harzianum with Fusarium solani during its pathogenesis and the associated resistance of the host . Asian journal of Experimental Science, 21: 353-357.

CHOWDAPPA, P., S. P. MOHAN KUMAR, M. JITHI LAKSHMI and K. K. UPRETI, 2013. Growth simulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtillis or Trichoderma harzianum. Biological control. 65: 109-111.

ELAD, Y., I. CHET and Y. HENIS, 1981. A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica, 9: 59-67.

ETEBARIAN, H. R. 2009. Vegetable Diseases and their Control. Tehran University Press, Tehran, Iran.

FARHANG NIYA, S., L. NARAGHI, F. OMMATI and M. PIRNIA, 2015. Evaluation of the efficacy of the biological compound affected by Talaromyces flavus in controlling tomato Fusarium wilt disease in the field conditions. International Journal of Agricultural Science and Research, 5: 153-164.

HARMAN, G. E., A. H. HERRERA-ESTRELLA, B. A. HORVITZ and M. LORITO, 2012. Special issue: Trichoderma- from basic biology to biotechnology. Microbiology, 158: 1-2.

HERMOSA, R., A. VITERBO, I. CHET and E. MONTE, 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158: 17-25.

HIBAR, K., M. DAAMI-REMADIS and M. EL MAHJOUB, 2007. Induction of resistance in tomato plants against Fusarium oxysporum f. sp. radicis-lycopersici by Trichoderma spp. Tunisian Journal of Plant Protection, 2: 47-58.

JOHN CHRISTOPHER, D., T. SUTHIN RAJ, S. USHA RANI and R. UDHAYAKUMAR, 2010. Rol of defense enzymes activity in tomato as induced by Trichoderma virens against Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici. Journal of Biopesticide, 3: 158-162.

JUBER, K. S., A. K. HASSAN and Y. N. ALHAMIRI, 2014. Evaluation of biocontrol agents and chemical inducers for managing a vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Journal of Biology, Agriculture and Healthcare, 4: 335-343.

LESLIE, J. F. and B. A. SUMMERELL, 2006. The Fusarium laboratory manual. Blackwell Press, Manhattan, Kansas.

MADHAIYAN, M., S. POONGUZHALI., M. SENTHILKUMAR, S. SESHADRI, H. CHUNG, J. YANG, S. SUNDARM and T. SA., 2004. Growth promotion and induction of systemic resistance in rice cultivar co-47 by methylobacterium spp. Botanical Bulletin Academia Sinica, 45: 315-324. 

MAHADEVAN, A. and R. SRIDHAR, 1982. Methods in physiological plant pathology. Sivakam Publishers, Madras.

MARTINEZ-MEDINA, A., I. FERNANDEZ, M. J. SANCHEZ-GUZMAN, S. C. JUNG, J. A. PASCUAL, and M. J. POZO, 2013. Deciphering the hormonal signaling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frontiers in Plant Science, 4: 1-12.

MATHYS, J., K. DE CREMER, P. TIMMERMANS, S. VANKERCHHOVE, B. LIEVVENS, M. VANHAECKE, B. P. CAMMUE and B. DE CONICH, 2012. Genome-wide characterization of isr induced in arabidopsis thaliana by trichoderma hamatum t382 against botrytis cinerea infection. frontiers in plant science. 3: 108.

MELO, G. A., M. M. SHIMIZU and P. MAZZAFER, 2006. Polyphenol oxidase activity in coffee leaves and its role in resistance against the coffee leaf miner and coffee leaf rust. Phytochemistry, 67 (3): 277-285.

MENZIES, J. G., C. KOCH and F. SEYWERD, 1990. Additions to the host range of Fusarium oxysporum f. sp. radicis-lycopersici. Plant Disease, 74: 569-572.

MISHRA, D. S., A. K. GUPTA, C. R. PRAJAPATI and S. SINGH, 2011. Combination of fungal and bacterial antagonists for management of root and stem rot disease of soybean. Pakistan Journal of Botany, 43: 2569-2574.

MORKUNAS, L. and J. GMEREK, 2007. The possible involvement of peroxidase in defense of yellow lupin embryos axes against Fusarium oxysporum. Journal of Plant Physiology, 164: 497-506.

MUKHERJEE, M., P. K. MUKHERJEE, B. A. HORWITZ, C. ZACHOW, G. BERG and S. ZEILINGER, 2012. Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian Journal of Microbiology, 52: 522-529.

MWANGI, M. V., E. O. MONDA, SH. A. OKOTH and J. M. JEFWA, 2011. Inoculation of tomato seedlings with Trichoderma harzianum and arbuscular mycorrhyzal fungi and their effect on growth and control of wilt in tomato seedlings. Brazilian Journal of Microbiology, 42: 508-513.

NAING, K. W., X. H. NGUYEN, M. ANEES, Y. S. LEE, Y. CH. KIM, S. J. KIM, M. H. KIM, Y. H. KIM and K. Y. KIM, 2015. Biocontrol of Fusarium wilt disease in tomato by Paenibacillus ehimensis KWN38.World Journal of Microbiology and Biotechnology, 31: 165-174.

NAWROCKA, J. and V. MALOLEPZA, 2013. Diversity in plant systemic resistance induced by Trichoderma. Biological control, doi: 10.1016/j.biocontrol.2013.07. 005.

NIRENBERG, H. I. and K. O’DONNELL, 1998. New Fusarium species and combination within the Gibberella fujikuroi species complex. Mycologia, 90: 434-458.

OJHA, S. and N. C. CHATTERJEE, 2012. Induction of resistance in tomato against Fusarium oxysporum f. sp. Lycopersici mediated through salicylic acid and Trichoderma harzianum. Journal of Plant Protection Research, 52: 220-225.

PIETERSE, C. M. J., CH. ZAMIOUDIS, R. L. BERENDSEN, D. M. WELLER, S. C. M. VAN WEES and P. A. H. M. BAKKER, 2014. Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology. 52: 16.1-16.29.

POURJAM, E., N. KAMALI and N. SAHEBANI, 2015. Elicitation of defense responses in tomato against Meloidogyne javanica and Fusarium oxysporum f. sp. Lycopersici wilt complex. Journal of Crop Protection, 4: 29-38.

RAJIK, M., S. K. BISWAS and SH. SHAKTI, 2012. Biochemical basis of defense response in plant against Fusarium wilt through bio-agents as an inducer. African Journal of Agriculture Research, 7: 5849-5857.

SUNDARAMORTHY, S. and P. BALABASKAR, 2013. Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Journal of Applied Biology and Biotechnology, 1: 36-40.

TUCCI, M., M. RUOCCO, L. DE MASI, M. DE PALMA, and M. LORITO, 2011. The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology, 12: 341-354

VANCE, C. P., T. K. KIRK and R. T. SHERWOOD, 1980. Lignification as a mechanism of disease resistance. Annual Review of Phytopathology, 18: 259-288.

VERMA, N., M. AHMED and R. S. UPADHIAY, 2014. Induction of resistance in tomato against Fusarium oxysporum f. sp. lycopersici. Persian Gulf Crop Protection, 3: 25-36.

VINALE, F., K. SIVASITHAMPARAM, E. L. GHISALBERTI, R. MARRA, M. J. BRABETTI, H. LI, S. L. WOO and M. LORITO, 2008. A novel role for secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology. 72: 80-86.

VOS, C. M., Y. YANG, B. DE CONICK and B. P. A. CAMMUE, 2014. Fungal (-like) biocontrol organisms in tomato disease control. Biological Control, doi: 10.1016/j.biocontrol.2014.04.004.

WEITANG, S., Z. LIGANG, Y. CHENG ZONG, C. XIAODONG, Z. LIQUN and L. XILI, 2004. Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Protection, 23: 120-123.

YE, S. F., H. Y. ZHOU, Y. SUN, L. Y. ZAOU and J. Q. YU, 2006. Cinnamic acid causes oxidative stress in cucumber roots and promotes incidence of Fusarium wilt. Environmental and Experimental Botany, 56: 255-262.

ZAMIOUDIS, C. and C. M. J. PIETERSE, 2012. Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interaction, 25: 139-150.